Correlations and forces in sheared fluids with or without quenching [New J. Phys. **21** 073029 (2019)]

<u>C.M. Rohwer</u>^{1,2}, A. Maciolek^{1,2}, M. Krüger³, S. Dietrich^{1,2}

¹ MPI-IS, Stuttgart
² University of Stuttgart
³ University of Göttingen

TPCE19, Erice, 09. 2019

Matthias Krüger (Uni. Göttingen)

Ania Maciolek (MPI-IS, Stuttgart)

Siegfried Dietrich (MPI-IS, Stuttgart)

Alex Solon (CNRS, Paris)

Mehran Kardar (MIT)

C.M. Rohwer

Overview

System

- Stochastic media: classical fluids (no hydrodyn.)
- Short-ranged correlations in equilibrium
- External objects
- Collective phenomena & effects on external objects

Non-equilibrium phenomena

- Temperature quench: dynamics & correlations
- Additionally shear
- Role of conservation laws?

Necessary conditions

- Fluctuations
- Long-ranged correlations
- External bodies modify boundary cond's

Review: Kardar, Golestanian, Rev. Mod. Phys. (1999)

Examples in *equilibrium*:

Quantum Casimir force $\frac{F}{A} \propto \frac{\hbar c}{L^4}$ *H.B. Casimir*, Proc. K. Ned. Adad. Wet. (1948) Thermal/Critical Casimir force $\frac{F}{A} \propto \frac{k_B T}{L^3}$ Fisher, de Gennes, CR Acad. Sci. Paris. Ser. (1978) NB: $F \rightarrow 0$ if $\xi \rightarrow 0$!

Purely non-equilib. FIFs

PHYSICAL REVIEW LETTERS

week ending 7 JUNE 2013

Giant Casimir Effect in Fluids in Nonequilibrium Steady States

T. R. Kirkpatrick,^{1,2,*} J. M. Ortiz de Zárate,³ and J. V. Sengers¹

$$p_{\rm NE} = \frac{c_p k_{\rm B} T^2(\gamma - 1)}{96\pi D_T (\nu + D_T)} \quad \times \left[1 - \frac{1}{\alpha c_p} \left(\frac{\partial c_p}{\partial T} \right)_p + \frac{1}{\alpha^2} \left(\frac{\partial \alpha}{\partial T} \right)_p \right] L \left(\frac{\nabla T}{T} \right)^2$$

Fluid with local/short-ranged correlations in equilib. (no hydrodyn.)

Perform temperature quench

- rapidly switch noise strength
 - passive medium: **temperature** \Leftrightarrow *T*
 - active medium: **activity** \Leftrightarrow T_{eff}

Later: add shear to system (inhomogeneous)

Tools: stochastic DEs; statistical field theories

- microscopic Langevin eqs $d\mathbf{x}_i/dt = \frac{D}{k_B T} \mathbf{F}_i + \sqrt{2D} \boldsymbol{\xi}_i(t)$ $\langle \boldsymbol{\xi}_i(t) \rangle = 0, \quad \langle \boldsymbol{\xi}_i(t) \boldsymbol{\xi}_j(t') \rangle = \delta_{i,j} \delta(t-t')$
- coarse-grain: density field $\rho(\mathbf{x},t) = \sum_i \delta(\mathbf{x} - \mathbf{x}_i(t))$

[J. Chem. Phys. **146**, 134507 (2017)] [J. Chem. Phys. **148**, 084503 (2018)]

fluctuations

 $\phi(\mathbf{x},t) = \rho(\mathbf{x},t) - \langle \rho(\mathbf{x}) \rangle_{eq}$

• Langevin eq. for *φ*:

$$\partial_t \phi(\mathbf{x}, t) = \boldsymbol{\mu} \nabla^2 [m\phi(\mathbf{x}, t)] + \boldsymbol{\eta}(\mathbf{x}, t) = -\nabla \cdot \mathbf{j}$$
$$\langle \boldsymbol{\eta}(\mathbf{x}, t) \boldsymbol{\eta}(\mathbf{x}', t') \rangle = -2k_B T \boldsymbol{\mu} \nabla^2 \delta^d(\mathbf{x} - \mathbf{x}') \delta(t - t')$$

• $\mathscr{H}[\phi] = \int d^d x \, \frac{m}{2} \phi^2(\mathbf{x})$ [no $(\nabla \phi)^2$ -term, i.e. $\xi \to 0$] (!)

Correlations following a quench

- $\phi(\mathbf{x},t) = \rho(\mathbf{x},t) \langle \rho(\mathbf{x}) \rangle_{eq}$
- $\mathscr{H}[\phi] = \int \mathrm{d}^d x \, \frac{m}{2} \phi^2(\mathbf{x})$
- steady state: $\langle \phi(x)\phi(x')\rangle = \delta^d(x-x')\frac{k_BT}{m}$

Correlations following a quench

- $\phi(\mathbf{x},t) = \rho(\mathbf{x},t) \langle \rho(\mathbf{x}) \rangle_{eq}$
- $\mathscr{H}[\phi] = \int \mathrm{d}^d x \, \frac{m}{2} \phi^2(\mathbf{x})$
- steady state: $\langle \phi(\mathbf{x})\phi(\mathbf{x}')\rangle = \delta^d (\mathbf{x} \mathbf{x}') \frac{k_B T}{m}$
- Dynamics

 $\partial_t \phi(\mathbf{x},t) = \mu \nabla^2 [m\phi(\mathbf{x},t)] + \eta(\mathbf{x},t) \quad \text{with} \quad \langle \eta(\mathbf{x},t)\eta(\mathbf{x}',t') \rangle = -2k_B T \mu \nabla^2 \delta^d(\mathbf{x}-\mathbf{x}')\delta(t-t')$

- Quench:
 - Initial state: $\phi(t = 0) = 0$ (T = 0)
 - At time *t* = 0: **switch on noise** (*T* > 0)
 - System must reach new equilib.

Correlations following a quench

- $\phi(\mathbf{x},t) = \rho(\mathbf{x},t) \langle \rho(\mathbf{x}) \rangle_{eq}$
- $\mathscr{H}[\phi] = \int \mathrm{d}^d x \, \frac{m}{2} \phi^2(\mathbf{x})$
- steady state: $\langle \phi(\mathbf{x})\phi(\mathbf{x}')\rangle = \delta^d(\mathbf{x} \mathbf{x}')\frac{k_BT}{m}$
- Dynamics

 $\partial_t \phi(\mathbf{x},t) = \mu \nabla^2 [m\phi(\mathbf{x},t)] + \eta(\mathbf{x},t) \quad \text{with} \quad \langle \eta(\mathbf{x},t)\eta(\mathbf{x}',t') \rangle = -2k_B T \mu \nabla^2 \delta^d(\mathbf{x}-\mathbf{x}')\delta(t-t')$

Quench:

- Initial state: $\phi(t=0) = 0$ (T = 0)
- At time t = 0: switch on noise (T > 0)
- System must reach new equilib.
- Transient long-ranged correlations:

$$\langle \phi(0,t)\phi(X,t) \rangle = -\frac{k_B T}{m X^d} \frac{e^{-\frac{1}{8t^*}}}{(8\pi t^*)^{d/2}},$$

 $t^* = \mu m t / X^2.$

C.M. Rohwer

Transient fluct.-ind. force: inclusions

Simulations:

- Interacting Brownian particles
- *T*-quench for passive particles
- activity quench for passive particles

[Rohwer *et al.*, Phys. Rev. E **97**, 032125 (2018)]

What happens if we additionally shear this (non-eq.) system?

Dynamics with shear

Details: New J. Phys. 21 073029 (2019)

Density fluctuations: $\phi(x,t) = \rho(x,t) - \langle \rho(x) \rangle_{eq}$ Langevin eq.:

$$\begin{aligned} \partial_t \phi + \dot{\gamma} y \frac{\partial \phi}{\partial x} &= \hat{\mu} (\xi^2 \nabla^2 - 1) \phi + \eta (x, t) \\ \langle \eta (x, t) \eta (x', t') \rangle &= 2 \hat{\mu} k_B T \delta (x - x') \delta (t - t'). \end{aligned}$$

- $\dot{\gamma}$ = shear rate
- $\xi = \sqrt{\kappa/m}$ = equilib. correlation length (e.g. :: interaction radius)
- *m* = mass / compressibility

Conserved / non-conserved dynamics:

$$\hat{\mu} = \begin{cases} \mu_A, & \text{non-conserved}, \\ -\mu_B \nabla^2, & \text{conserved}. \end{cases}$$

Correlations in presence of shear

Steady state after quench $(t \rightarrow \infty)$:

- Model A (non-conserved): $\langle \phi(\mathbf{x})\phi(\mathbf{x}')\rangle_{t\to\infty} \propto \dot{\gamma} \frac{e^{-x/\xi}}{|\mathbf{x}|^3}$
- Model B (conserved): $\langle \phi(\mathbf{x})\phi(\mathbf{x}')\rangle_{t\to\infty} \propto \dot{\gamma} \frac{\xi^2}{|\mathbf{x}|^3}$

Correlations in presence of shear

Steady state after quench $(t \rightarrow \infty)$:

- Model A (non-conserved): $\langle \phi(\mathbf{x})\phi(\mathbf{x}')\rangle_{t\to\infty} \propto \dot{\gamma} \frac{e^{-x/\xi}}{|\mathbf{x}|^3}$
- Model B (conserved): $\langle \phi(\mathbf{x})\phi(\mathbf{x}')\rangle_{t\to\infty} \propto \dot{\gamma}_{|\mathbf{x}|^3}^{\xi^2}$

Dynamics:

Correlations: conserved dynamics

$$\begin{split} C^{(d=3)}(\mathbf{x},\,t) &= \frac{1}{|\mathbf{x}|^3} \left(\frac{k_B T_I}{m_I} - \frac{k_B T}{m} \right) \left[h_{0,0}^Q(t^*) + \tilde{\xi}^2 h_{0,\xi^2}^Q(t^*) + \frac{\Omega_x \Omega_y}{\tilde{\lambda}^2} h_{\gamma,0}^Q(t^*) + \frac{\Omega_x \Omega_y \tilde{\xi}^2}{\tilde{\lambda}^2} h_{\gamma,\xi^2}^Q(t^*) \right] \\ &+ \frac{k_B T}{m|\mathbf{x}|^3} \left[\frac{\Omega_x \Omega_y \tilde{\xi}^2}{\tilde{\lambda}^2} h_{\gamma,\xi^2}^S(t^*) \right] + \frac{k_B T_I}{m_I |\mathbf{x}|^3} \Delta \tilde{\xi}^2 \left[h_{0,\Delta\xi^2}^R(t^*) + \frac{\Omega_x \Omega_y}{\tilde{\lambda}^2} h_{\gamma,\Delta\xi^2}^R(t^*) \right] \\ &+ \mathcal{O}(\tilde{\xi}^4,\,\Delta\xi^4,\,\lambda^{-4}), \end{split}$$

 $\lambda = \sqrt{D/\dot{\gamma}}$, i.e. $\lambda^{-2} \sim \dot{\gamma}$; m = mass/compressibility; $t^* = Dt/x^2 = \text{dim.less time}$; $\xi = \text{fluid correlation length}$; T_I , T = temp. before/after quench; $\Omega_{\alpha} = (\hat{x})_{\alpha}$

- Magnitude depends on orientation of *L*
- Direction: not along *L* (:: shear distortion)

Closing

Fluctuation-induced effects in sheared systems

- Quench + conservation \implies Long-ranged non-eq. correlations
- Embedded objects: transient forces
- Shear distorts correlations
- Non-trivial time-dep. of forces

Outlook

- Plate geometry
- *n* > 2 inclusions (many-body)
- Transport coefficients, e.g., viscosity
- Other geometries

Thank you!

Correlations & forces with shear

 C.M. Rohwer, A. Maciolek, S. Dietrich & M. Krüger New J. Phys. 21 073029 (2019)

Fluctuation-induced forces from *T*-quenches:

- [2] C.M. Rohwer, M. Kardar & M. Krüger Phys. Rev. Lett. 118, 015702 (2017)
- [3] C.M. Rohwer, A. Solon, M. Kardar & M. Krüger *Phys. Rev. E* 97, 032125 (2018)

